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Abstract-The dynamic behavior of tubular heating elements with harmonic internai heat generation 
is studied both analytically and experimentally. The analysis is by the “frequency response” method. 
Its results are given in terms of the more usual “engineering” criteria. The experimental technique used 

is described briefly; its results agree with those of the analysis. 

NOMENCLATURE 

constants of integration; 

specific heat [J/kg. K]; 
outside diameter of annulus Em]; 
function defined by equation (25); 
inner diameter of annulus [ml; 
function defined by equation (23); 
function defined by equation (24); 
transfer function; 
heat-transfer coefficient [W/m’. K]; 
modified Bessel function of first kind; 
J( - l), imaginary unit; 
modified Bessel function of second kind; 
thermal conductivity [W/m. K]; 

tube length [m]; 
dimensionless parameter defined in 
equation (8); 

S, 

T, 
t, 
0, 

X, 
& 

Laplace’s variable; 
T/T,, dimensionless time; 
temperature [K]; 
fluid velocity in annulus [m/s]; 
x/L, dimensionless distance; 
distance measured along test section from 
coolant inlet [ml; 
thermal diffusivity [m’/s]; 
reduced temperature, defined by equation (7) 
[dimensionless]; 
density [kg/m31 ; 
time [s]; 
time lag [dimensionless]; 

UT, ; 
angular frequency [rad/s]. 

h(D - d,)/k,, Nusselt number 
[dimensionless]; 
function defined by equation (21); 
v(D-d,,)pf/pf, Reynolds number 
[dimensionless] ; 

Subscript 

a, amplitude; 

7, 
cylinder; 
fluid; 

power generated per unit volume [W/m”]; 
total power [W]; 

j f s!%) ; 
r,lrO, dimensionless radius; 
radius in test section [m]; 

inner surface of cylinder; 
inlet section of annulus; 
mean ; 
outer surface of cylinder; 
zero order of modified Bessel function; 
at R = 1, or first order of modified Bessel 
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INTRODUCTION ~ath~matical~rmulat~o~~ 
THE STUDY of the dynamic behavior of heating elements 
with internal heat generation is important in the control 
of heat exchangers with internal heat sources, par- 
titularly nuclear reactors. This importance merited a 
considerahle amount or research work. Exact solutions 
for the transient cases are given by Arpaci and Clark 
[l], and by Feretic and Hilal [2]. Feretic and Sultan 
[3] studied the case of a cylindrical element in which 
heat is generated randomly with time, but dist~but~ 
according to a sine function along the element. Their 
theoretical investigation gives the pertinent amplitude- 
frequency characteristics, and the standard deviation 
of temperature. 

The temperature distribution in the solid of the 
cylinder is governed by the general equation of con- 
duction in one direction; in the present case it has the 
following form 

In this equation P, is the constant amplitude of the 
power input to a unit volume of the cylinder solid, 
k, and iw, are the thermal conductivity and diffusivity of 
the cylinder material, and w the angular frequency. 

The heat convected to the fluid is governed by the 
following relation 

On the other hand, solutions for temperature tran- 
sients were obtained by Thorpe [4], and by Solbert 
and Bakstad [5] by numerical methods. 

The present work is a study of the case of a tube 
in the material of which heat is internally generated 
uniformly in space. but sinusoidal~y with time. The 
established-state temperature amplitude and phase- 
shift are determined analytically as “frequency re- 
sponse”. The well-defined conditions made it possible 
to compare the analytic results with experimental ones. 
In the experimental study. a stainless steel tube is 
heated by a d.c. current that varies sinusoidally with 
time, and cooled at its outside surface by a steady-flow 
of water. Good agreement was found between analysis 
and experiment. 

Boundary conditions. The boundary conditions for 
the problem, as formulated above. are 

1. An expression of the assumption (e) above, viz. 

dt,(rt, 4 ----_-=o. 
2r 

2. Heat transfer at cylinder outer surface gives 

&@,, 7) 
-kc----- 

ar 
= h[&(ror 7) - t&t, T)]. (4) 

ANALYSIS 

The mathematical model for this analysis is a hollow 
cylinder with internal heat generation. Heat is gen- 
erated uniformly in the solid part of the cylinder 
following a harmonic time function. The cylinder is 
cooled at its outside surface by a fluid Bowing steadily 
in an annular space, and the following conditions are 
assumed. 

3. The fluid enters the annular passage at x = 0 at 
a known constant temperature tl,in i.e. 

t,(O, 7) = lf.in. 15) 

4. Under the established periodic conditions as- 
sumed in (f) above, the angular frequency of the 
temperature fluctuations in both solid and fluid is w(), 
the same as that of power. 

(a} Thermal conduction in the axial direction is 
negIigibIy small, i.e. t, == tc(r, T). Variations of t, with 
axial distance result from variations in adjacent fluid 
temperature. 

Di~~s~o~~es~ form The problem could be set in 
dimensionless form by defining the foIIowing quantities. 
For the independent variables 

(b) The outer surface of the annulus is perfectly 
insulated; the cooling fluid exchanges heat with the 
cylinder only. 

(c) The fluid temperature rs is taken as uniform at 
any cross-section of the annulus, i.e. tS = tr(x, 7). 

(d) The heat-transfer coefficient h between the outer 
surface of the cylinder and the fluid is constant, 
inde~ndent of both position and time. 

(e) The hollow cylinder is insulated at its inner 
surface. 

R = rjr,, x = x/L, T = ~jlz,, (6) 

in the last expression, to is a reference. period. 
The temperatures, the dependent variabIes, are re- 

duced to dimensionless form by referring their rise 
above the fluid inlet temperature to an arbitrary 
temperature amplitude t,, hence 

(f) Establihsed periodic conditions are attained. 
(g) All physical properties of both solid and fluid 

are constants. 

Q = (t-tf+in)/taa (7) 

According to the above definitions, the reduced tem- 
peratures in the cylinder solid and in the fluid are, 
respectively 

NC = @JR, T) and 0, = Qf(X, T). 
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The following dimensionless parameters are also (17). The presence of the local transformed fluid tem- 
defined. perature gr in the latter equation, makes both of the 

NFo = u,t,/r~ Fourier number, 

NP = P&/k, t,, 

Nsi = hr,/k, Blot number, 

Nh = 4hd,~,lprc,(D2 - &), 

constants A and B functions of this temperature. 
Substitution of the values of A and B thus obtained 

into equation (19) gives [6] 

(8) t?, = G.&+F. gf,. (22) 

N, = vz,/L, In this relation, the functions I’ and G are given by 

and R = 037,. 
J 

With these dimensionless quantities defined, the 

F = F(r, s) = -g 

differential equations and boundary conditions, equa- X [Ki (q&). Io(qR) + 11 (q&l. Id(qR)] 

tions (l)-(5) become, respectively: G = c(R,s) = (l-n/q’. 

(9) 
The function b(s) in equation (23) is given by 

D(s) = Nsi[Ki(iiRi). r,(d) + 4(qRi).&(c?)] 

(10) + (I[Ki(G&). II(~) - Il(q&J. KI (411. 

B,(O, 7-f = 0. 

Laplace transformation 
Transformation in the usual manner, and 

tion into equations (9)-( 13) give, respectivety 

(17) 

N,,~=N,G,IY,,,-ls+N,-N,~,)Ri. (26) 

Equation (26) is a linear “ordinary” ~fferential 

(18) equation in 8f with all the quantities involved indepen- 
dent of the distance X. Using the boundary condition 
of equation (18), the solution of equation (26) is given by Equation (14) is an inhomogeneous modified Bessel’s 

differential equation of zeroth order; its solution is 
given by 

(23) 

(24) 

(25) 

The appearance of the first order modified Bessel 

(11) 
functions I1 and K1 in the above expressions is by 
virtue of the recurrence formulae and the differentials 
of equations (16) and (17). 

(12) As mentioned earlier in connection with the inte- 
gration constants A and B1 the solid temperature at 

(13) 
a given cross-section as expressed by equation (22) is 
a function of the fluid temperature in the same cross- 
section. The Laplace transform of the latter could be 

substitu- determined in the following manner: 
At the cylinder surface, the value of t’&, = A,( 1, s) is 

evaluated from equation (22) as 

(14) 

8, = Al&R) + BK&R) + 3 (19) 

where 

4 = q(s) = ~(s/N~~) (20) 

and 

&s = nNP/(s2 + 0’). (21) 

The constants A and B could be related through 
equation (16) and, hence, determined from equation 

(15) 
In this relation the subscript “1” denotes the value of 
the function at R = 1, the cylinder surface. Substituting 
for f?,, from the above expression into equation (15), 

(16) 
and rearranging terms, gives 

This equation gives the Laplace transform of the fluid 
temperature along the cylinder. Substituted into equa- 
tion (22) it gives the transformed temperature in the 
cylinder material. 

Solution 
The transformed solution of the problem is given by 

equations (22) and (27). A final solution could be ob- 
tained by the inverse transformation of these ex- 
pressions. With approp~ate “initial conditions”, this 
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solution would be general, i.e. would give the transient 
as wet1 as the established-state conditions. In the 
present case. however, the objective is to ‘find the 
estabfished-state solution; it could be obtained from 
equations (22) and (27) in the manner given below 
without the tediousness of obtaining their inverse 
transformation. 

The established-state solution has the following form, 
for both the fluid and solid domains [7] 

0 = fi, sin(QT - $). (28) 

The temperature ~plitudes and phase-shifts, rep 
resented by 0, and 11, in the above equation could be 
determine by the *‘“frequency response” method [7] 
from the appropriate transfer functions. 

A transfer function i?is the ratio between the Laplace 
transforms of the dependent and driving functions. 
Consequently, the transfer functions for both the fluid 
and solid are determined from equations (27) and (22), 
respectively. as 

-- 
H,(K,s)+-=G+F.H,. (30) 

P.S 

In the “frequency response” method, the amplitude 
of the dependent function could be obtained simply 
by multiplying the amplitude of the excitation function 
by the modulus, or absolute value, of the corresponding 
transfer function in which the Laplace transform 
variable s is replaced by i12. In the present case, 
therefore, 

(If., = NPl rr,(X, iQ) I (311 

&,, = ~~l~(R,i~)l. (32) 

The same method gives the phase-shift, or time-lag, 
as the argument of the transfer function with if2 
replacing s, therefore 

$, = arg JJf(X, in) (33) 

lI/E = arg j-fe(R, in). (34) 

In the evaluation of the amplitudes and phase-shifts 
given by equations (31)-(34), it should be noted that the 
variable q(s) defined by equation (20) is replaced by 

q(iQ) = ~‘(i~/~~~~. (35) 

The resufting modified Bessel functions with imagin- 
ary arguments resulting from equations (23) and (25) 
are then replaced by the appropriate Kelvin (or 
Thomson) functions using pertinent relations [S]. This 
substitution results in very complicated functions. 

However, the calculations were carried out by digital 
computer, and the computation of numerical values 
were made through appropriate subroutines. 

ANALYTIC RESULTS 

Numerical values were computed from equations 
(31)-(34) for the experimental conditions described 
later. The following values were. therefore, used in 
evaluating the parameters of equations (8): do = 10 mm, 
di = 7mm, L = 930mm, k, = 13.8 W/mK, a, = 3.6 x 
10e6 m*/s. 

The reference period r0 and temperature amplitude t, 
were arbitrarily taken as 1 s and 1 K, respectively. 

Further, to give the computed results more practical 
value, the fluid velocity c and the heat-transfer coefli- 
cient iz are represented through the annulus ratio O/d0 
and the Reynolds number ,?i,, in the parameters of 
equations (8). In particular, the heat-transfer coefficient 
is calculated from the following relation [9] 

NNu = 0.038N~psN~~3(D/d,)0.‘5. (36) 

Samples of the results obtained are shown in Figs. 1-5. 
Figure 1 gives the distribution of the temperature 
amplitude at various cylinder cross-sections. The tem- 
perature amplitude f& is presented in this and other 
figures through the “temperature gain”, fl,,/N,. It could 
be seen that the amplitude is small where cooling is 
effective. Thus, at a given cross-section the maximum 
amplitude is at the inner insulated surface of the 
cylinder and decreases to its least value at the water- 
cooled outside surface. For a given radius, the am- 
plitude increases with the distance from the fluid inlet, 
as the cooling effect decreases with the temperature 
rise of the coolant. 

7--- 
T -T----- 

FIG. I. Distribution of temperature amplitude 
at various cross-sections of cylinder. 
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FIG. 2. Variation of temperature amplitude 
withfrequencyon the inside surface ofcylinder. 

10-21 / I 1 I 
0 0.2 lb4 0.6 0.6 1.0 

Reduced distance, X 

FIG. 3. Temperature amplitude of coolant along annular 
conduit. 

The effect of frequency is shown in Fig. 2. The tem- 
perature amplitude at any point on the cylinder surface 
decreases as the frequency increases. This is a well- 
known phenomenon, and is due to the cylinder heat 
capacity that attenuates high frequencies more effec- 
tively than low ones. 

Figure 3 gives the variation of the fluid temperature 
amplitude along the annular conduit with frequency, 
and with Reynolds number. The trends are the same 
as for the cylinder surface. The fluid temperature 
amplitude increases with the distance X along the 
annulus; indeed, because the fluid enters the annulus 

t 
P 

2 

t 

Cylinder rurf4cr 

..---_ flrnid 
i 

o/&74 = l-5 

N *,=104 

_--- __ _--- 
0.1 ___------ 

0.1 
0 0.2 o-4 W6 0.6 1.0 

Reduced distance. X 

FIG. 4. Phase-shift of temperature at cylinder surface and 
of coolant along annular conduit. 

--__ 
--a_ 0.1 

0 
0 2 4 5 R 

IO* amber, IO4 N** 

FIG. 5. Effect of Reynolds number on phase-shift at exit 
(X = 1). 

at a steady temperature. This amplitude increases with 
the decrease of frequency. Further, a comparison of the 
two sets of curves in Fig.3 shows that the fluid tem- 
perature amplitude decreases as the Reynolds number 
increases. The reason is that, all other conditions being 

the same, the fluid heat capacity rate increases with 
Reynolds number. 

The effects of the various parameters on the phase- 
shift, or time-lag are shown in Figs. 4 and 5. For both 
the cylinder surface (or anywhere in the solid) and the 
fluid, the time lag increases with the distance X along 
the annular conduit, and with the decrease of frequency 
as shown in Fig. 4. The figure also shows a phase shift 
between the cylinder surface temperature and that of 
the fluid at any cross-section, with the fluid temperature 
lagging. This trend is naturally expected, and this 
time-lag increases with the distance X. 
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FIG. 6. Primary circuit of experimental loop 

- 0 X.5/6 

----- A x- z/3 

--- 0 x-1/3 

Crcq,,cncy= 2S~03cycler/ h 

0 1 2 3 I 5 6 I S 9 

lhynoldt nrmbsr. 10 4 NRe 

FIG. 7. Variation of temperature amplitude along wall 
surface with Reynolds number. 

Figure 5 shows the effect of Reynolds number on the 
phase-shift of both the cylinder surface and fluid tem- 
peratures at the fluid exit. The time-lag decreases with 

the better cooling of increased Reynolds number and, 
as before, with the decrease in frequency. 

EXPERIMENTS 

The mathematical solution given in the previous part 
is carried out under the simplifying assumptions 
enumerated therein. To estimate the effect of these 
assumptions, experiments were carried out on an 
apparatus built to represent the mathematical model 

practically. 
The apparatus is shown diagrammatically in Fig. 6. 

The cylinder was modelled by a vertical stainless steel 
tube of the dimensions mentioned earlier. Care was 
taken in the design and manufacture of the end headers 
to ensure concentricity of the cylinder in the annulus, 
freedom of motion due to relative thermal expansion, 
tightness, ample electric insulation, and, as much as 
possible, a swirl-free flow of the coolant in the annulus. 
To exclude the possibility of generating joulean heat, 
distilled water was used as coolant. Heated distilled 
water was cooled in two heat exchangers by ordinary 
water in a secondary circuit which comprises a cooling 
tower. 

The dc. power is supplied to the “cylinder” from a 

motor-generator set. Rectified a.c. current is fed 
through a rotating rheostat of uniform speed to supply 
field current of sinusoidal form to the d.c. generator. 
This fluctuating current results in sinusoidal voltage 

for the d.c. power supplied to the test section. 
The cooling water flow was measured with an error 

of about one per cent by a sharp edged orifice. Copper- 
constantan thermocouples made from 0.25 mm wires 
were used to measure the water inlet and exit tempera- 
tures, and the surface temperature of the cylinder at 
five cross-sections. The error involved in these measure- 

ments, including the dynamic error, is also about one 
per cent. 

The power and frequency were determined from strip 
chart recordings. The errors involved were estimated 
to be within 2.3 and 0.8 per cent respectively. 

EXPERIMENTAL RESULTS 

Experiments were carried out under various condi- 

tions, and readings were taken after attaining estab- 
lished conditions. Representative results are shown in 
Figs. 7-11. These figures give the experimental results 
in various dot shapes, together with the corresponding 
analytic results in line forms. 

There are some differences between analysis and 
experiments in Figs. 7-9 at Reynolds numbers higher 
than about 4 x 104. These are for the temperature 
amplitudes at X = 5/6 on the cylinder surface. These 

differences are probably due to the inevitable change 
in flow pattern just before and in the exit header, a 
change that considerably decreases the local heat 
transfer coefficient and, hence, enhances the tempera- 
ture amplitude. This change in flow pattern becomes 
more pronounced at high Reynolds numbers. 

Generally speaking, however, all the figures show 
good agreement between theory and experiment, and 
support the trends previously explained in conjunction 
with Figs. 2-5. 

Of particular interest are Figs. 9 and 11; they show 
the effect of the annulus ratio on the temperature 
amplitude at the cylinder surface and fluid exit, respec- 
tively. For a given Reynolds number, an increase in 
the annulus ratio is accompanied by a decrease in the 
heat transfer coefficient h and, consequently, in the 
cooling effect of the water. This results in an increase 
in the cylinder surface temperature amplitude as shown 
in Fig. 9. On the other hand, an increase in the annulus 
ratio at a given Reynolds number means an increase 
in the mass flow rate of water. This, together with the 
increase in thermal resistance between the fluid and 
cylinder surface, results in a decrease in the water 
temperature amplitude as indicated in Fig. 11. 
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1 9 9 

FIG. 8. Variation of cylinder surface temperature amplitude FIG. 10. Variation of fluid temperature amplitude with 
with Reynolds number and frequency. Reynolds number and frequency. 
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FIG. 9. Variation of cylinder surface temperature amplitude FIG. 11. Variation of fluid temperature amplitude with 
with Reynolds number and annulus ratio. Reynolds number and annulus ratio. 

CONCLUSIONS 

Analysis is carried out to predict the dynamic be- 
havior of a cylinder internally heated according to a 
harmonic function, and its steady-flow coolant. Experi- 
ments were-carried out on a test section similar to the 
mathematical model. Close agreement was found 
between experimental and analytic results. 
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CONVECTION A PARTIR D’UN TUBE AVEC UNE 
GENERATION HARMONIQUE DE CHALEUR 

R&sum&On etudie, a la fois experimentalement et theoriquement. le comportement dynamique des 
elements de chauffage tubulaires avec generation interne harmonique de chaleur. L’analyse est basee sur 
la methode de “reponse frequentielle”. Les resultats sont donnts en termes de criteres pratiques pour 
I’ingenitrie. La technique exptrimentale utilisee est rapidement d&rite. Les resultats a laquelle elle 

conduit s’accordent avec ceux de I’analyse. 

KONVEKTION AN EINEM ROHR MIT HARMONISCHER INNERER WARMEERZEUGUNG 

Zusammenfassung-Das dynamische Verhalten von Rohrheizelementen bei harmonischer innerer 
Warmeerzeugung wird experimentell und analytisch mit Hilfe der “Frequenz-Antwort-Methode” unter- 
sucht, und die Ergebnisse werden in Form der gebrluchlichen “Ingenieur’‘-Kriterien dargestellt. Es ist 
eine gute Ubereinstimmung der gemessenen mit den errechneten Werten vorhanden. Die angewandte 

experimentelle Technik wird kurz beschrieben. 

KOHBEKLHlII OT TPYGbI HPM FAPMOHMYECKOM BHYTPEHHEM 
I-EHEPMPOBAHMM TETIJIA 

AtmoTauHR - AHWIRTRWCKA II 3KCFIepHMeHTWlbHO LiCCJle~ytOTCfl LIHHaMHYeCKHe XZlpaKTepHCTEiKH 

Tpy6WiTblX Har,,eBaTe,TbHblX 3JEMCHTOB I,,,H ElpMOHkiWCKOM BHYTPeHMCM I-CHepHpOBaHHH Tenna. 

&tan&is IIpOBOjI(kiTCSI MeTOjI,OM WlBCTHbIX XapaKTeptfCTPiK)). nOJiyYeHHble pe3yJlbTBTbI IlpeLlCTiiBJIeHbI 

B Bkine 06bIYHblX WH,KKeHePHblX)) K,,klTepHeB. KpaTKO OrWiCblBaCTCR LiCIlOflb3yeMblti 3KCIlepHMeHTBJlb- 

HblZi MeTOn; IlOJIyYeHHble pe3yJlbTaTbl XOpOlllO COI-JIaCyFOTCSl C ilaHHblMH aHUl113a. 


